IndependentMCSampler¶
- class axtreme.sampling.independent_sampler.IndependentMCSampler(sample_shape: Size, seed: int | None = None, **kwargs: Any)¶
Bases:
MCSampler,ABCAbstract base class for MCSamplers that independantly apply the same set of base samples at each x point.
This should be used when you want to ignore the covariance between different x points, and sample the X output space independently.
Note
Dimensions of the posterior are described using botorch notation (detailed in glassary.md) where:
*b: batch shape (can have arbitrary dimensionality).
n: the number of x input points.
m: dimensionality of targets space.
For example:
MultivariateNormal: (*b, n)
MultitaskMultivariateNormal: (*b, n, m)
- Dev Notes:
Is the shape of the base samples up to us to define, or are there some other parts of the system that expect MCSampler to have certain shape.
Answer: MCSampler does not define base_sample - we can do what we want.
MultivariateNormal and MultitaskMultivariateNormal both requires shape (*sample_shape, *posterior.shape() for base_samples in posterior.rsample_from_base_samples
For MultitaskMultivariateNormal: posterior.shape() = (*b,n,m)
For MultivariateNormal: posterior.shape() = (*b,n)
Design decision: we decide to make m explicit throughout.
e.g base samples will always have shape (*sample_shape,m)
This makes our code cleaner. When then convert back to implicit m dimension when calling posterior.rsample_from_base_samples
- __init__(sample_shape: Size, seed: int | None = None, **kwargs: Any) None¶
Abstract base class for samplers.
- Parameters:
sample_shape – The sample_shape of the samples to generate. The full shape of the samples is given by posterior._extended_shape(sample_shape).
seed – An optional seed to use for sampling.
**kwargs – Catch-all for deprecated kwargs.
Methods
__init__(sample_shape[, seed])Abstract base class for samplers.
add_module(name, module)Add a child module to the current module.
apply(fn)Apply
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Return an iterator over module buffers.
children()Return an iterator over immediate children modules.
compile(*args, **kwargs)Compile this Module's forward using
torch.compile().cpu()Move all model parameters and buffers to the CPU.
cuda([device])Move all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Set the module in evaluation mode.
extra_repr()Set the extra representation of the module.
float()Casts all floating point parameters and buffers to
floatdatatype.forward(posterior)Draw samples from the posterior, treating each of the n input points as independant.
get_buffer(target)Return the buffer given by
targetif it exists, otherwise throw an error.get_extra_state()Return any extra state to include in the module's state_dict.
get_parameter(target)Return the parameter given by
targetif it exists, otherwise throw an error.get_submodule(target)Return the submodule given by
targetif it exists, otherwise throw an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Move all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict, assign])Copy parameters and buffers from
state_dictinto this module and its descendants.modules()Return an iterator over all modules in the network.
named_buffers([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Return an iterator over module parameters.
register_backward_hook(hook)Register a backward hook on the module.
register_buffer(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Register a post hook to be run after module's
load_state_dictis called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Add a parameter to the module.
register_state_dict_pre_hook(hook)Register a pre-hook for the
state_dict()method.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state(state)Set extra state contained in the loaded state_dict.
share_memory()See
torch.Tensor.share_memory_().state_dict(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train([mode])Set the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Move all model parameters and buffers to the XPU.
zero_grad([set_to_none])Reset gradients of all model parameters.
Attributes
T_destinationcall_super_initdump_patchestraining- forward(posterior: Posterior) Tensor¶
Draw samples from the posterior, treating each of the n input points as independant.
- Parameters:
posterior – The posterior which should be sampled.
- Returns:
(*sample_shape, *b, n, m) where: - *b: is the posterior batch shape - n: number of input points in posterior - m: dimensionality of target
NOTE: While MultitaskMultivariateNormal and MultivariateNormal have different shapes ((*b,n,m) and (*b,n)) the output of this function is always of shape (*sample_shape, *b, n, m). This is consistent with the behaviour of MCSampler.
- Return type:
Returns a samples of the posterior with shape