FixedRandomSampler¶
- class axtreme.data.fixed_random_sample.FixedRandomSampler(data_source: Sized, num_samples: int | None = None, seed: int | None = None, *, replacement: bool = False)¶
Bases:
Sampler
[int
]Samples elements randomly.
This sampler differs from torch’s RandomSampler as it will return the same random sample each time it is iterated in full. If without replacement, then sample from a shuffled dataset. If with replacement, then user can specify
num_samples
to draw.- __init__(data_source: Sized, num_samples: int | None = None, seed: int | None = None, *, replacement: bool = False) None ¶
Initalise the sampler.
- Parameters:
data_source – dataset to sample from
replacement – samples are drawn on-demand with replacement if
True
, default=``False``num_samples – number of samples to draw, default=`len(dataset)`.
seed – seed for the random number generator, if None one will be allocated randomly.
Methods
__init__
(data_source[, num_samples, seed, ...])Initalise the sampler.
Attributes
- data_source: Sized¶
- property num_samples: int¶
- replacement: bool¶