axtreme.eval.qoi_helpers¶
Plotting helper tailored for analysingQoIJobResults.
Functions
|
Helper which creates a histogram (on the given ax) based on a column of the df. |
|
Helperfor plotting histograms (on the given ax) of dataframe cells containing lists. |
|
Takes a grouped dataframe, and generates a row of plots for each group, using plotting_funcs. |
|
Helper to run a QoI with a model, ignoring uncertainty in the model (e.g using the posterior mean). |
- axtreme.eval.qoi_helpers.plot_col_histogram(df: DataFrame, ax: Axes, col_name: str = 'mean', brute_force: float | None = None) None ¶
Helper which creates a histogram (on the given ax) based on a column of the df.
Designed for use with the ‘mean’ or ‘var’ column of a QoiJobResults dataframe.
- Parameters:
df – A dataframe.
ax – The axis to plot on.
col_name – The column of the df containing lists.
brute_force – Represents the true value (e.g mean). Plots a vertical line if provided.
- axtreme.eval.qoi_helpers.plot_distribution(df: DataFrame, ax: Axes, n_hists: int = 3, col_name: str = 'samples', brute_force: float | None = None) None ¶
Helperfor plotting histograms (on the given ax) of dataframe cells containing lists.
Designed for use with the ‘samples’ column of a QoiJobResults dataframe.
- Parameters:
df – A dataframe.
ax – The axis to plot on.
n_hists – The number of cells of column col_name to plot.
col_name – The column of the df containing lists.
brute_force – Represents the true value (e.g mean). Plots a vertical line if provided.
- axtreme.eval.qoi_helpers.plot_groups(df_grouped: DataFrameGroupBy, plotting_funcs: list[Callable[[DataFrame, Axes], None]]) Figure ¶
Takes a grouped dataframe, and generates a row of plots for each group, using plotting_funcs.
- Parameters:
df_grouped – The groupby object to plot
plotting_funcs – list of plots to be generated for each group. See plot_col_histogram for an example of a plotting function.
- axtreme.eval.qoi_helpers.qoi_ignoring_gp_uncertainty(qoi: GPBruteForce, model: SingleTaskGP) Tensor ¶
Helper to run a QoI with a model, ignoring uncertainty in the model (e.g using the posterior mean).
- Parameters:
qoi – The QoI estimator to use
model – The model to use
- Returns:
the estimates made by the QoI using only the posterior mean of the model.