MinimalDataset¶
- class axtreme.data.dataset.MinimalDataset(data: Sequence[T] | T)¶
Bases:
Dataset
[T
]Creates a Dataset over a list-like data source.
Note
list, np.array or tensor forfill the __getitem__ and __len__ requirement directly - but this makes them conform with the __add__ behaviour defined for datasets.
- __init__(data: Sequence[T] | T) None ¶
Creates a Dataset over a list-like data source.
- Parameters:
data – Supports being indexed (supports __getitem__) and len, where index values are considered datapoints.
e.g (-)
DataLoader. (- Datapoints should be compatible with) –
General work with numerics and matrixes
Specifics of what DataLoader consume from datasets see torch._utils.collate.default_collate
Examples
>>> data = [1, 2, 3] >>> ds = MinimalDataset(data) >>> ds[0] 1
>>> data = np.array([[1, 2, 3], [4, 5, 6]]) >>> ds = MinimalDataset(data) >>> ds[0] 1p.array([1,2,3])
>>> data = torch.tensor([[1], [2]]) >>> ds = MinimalDataset(data) >>> ds[0] torch.tensor([1])
Methods
__init__
(data)Creates a Dataset over a list-like data source.