InputVariable¶
- class mlfmu.types.fmu_component.InputVariable(*, name: str, type: ~mlfmu.types.fmu_component.FmiVariableType = FmiVariableType.REAL, description: str | None = None, variability: ~mlfmu.types.fmu_component.FmiVariability | None = None, startValue: float | str | bool | int | None = 0, isArray: bool = False, length: int | None = None, agentInputIndexes: list[~typing.Annotated[str, ~pydantic.types.StringConstraints(strip_whitespace=True, to_upper=True, to_lower=None, strict=None, min_length=None, max_length=None, pattern=^(\d+|\d+:\d+)$)]] = [])¶
Bases:
Variable
Represents an input variable for an FMU component.
Examples
An example of agent_input_indexes can be [“10”, “10:20”, “30”].
- __init__(**data: Any) None ¶
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
Methods
__init__
(**data)Create a new model by parsing and validating input data from keyword arguments.
construct
([_fields_set])copy
(*[, include, exclude, update, deep])Returns a copy of the model.
dict
(*[, include, exclude, by_alias, ...])from_orm
(obj)json
(*[, include, exclude, by_alias, ...])model_construct
([_fields_set])Creates a new instance of the Model class with validated data.
model_copy
(*[, update, deep])Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy
model_dump
(*[, mode, include, exclude, ...])Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump
model_dump_json
(*[, indent, include, ...])Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json
model_json_schema
([by_alias, ref_template, ...])Generates a JSON schema for a model class.
model_parametrized_name
(params)Compute the class name for parametrizations of generic classes.
model_post_init
(_BaseModel__context)Override this method to perform additional initialization after __init__ and model_construct.
model_rebuild
(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate
(obj, *[, strict, ...])Validate a pydantic model instance.
model_validate_json
(json_data, *[, strict, ...])Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing
model_validate_strings
(obj, *[, strict, context])Validate the given object with string data against the Pydantic model.
parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])update_forward_refs
(**localns)validate
(value)Attributes
model_computed_fields
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
model_extra
Get extra fields set during validation.
model_fields
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Index or range of indices of ONNX (agent) inputs to which this FMU signal shall be linked to.
name
Unique name for the port.
type
Data type as defined by FMI standard.
description
Short FMU variable description.
variability
Signal variability as defined by FMI.
start_value
Initial value of the signal at time step 1.
is_array
When dealing with an array signal, it is essential to specify the LENGTH parameter.
length
Defines the number of entries in the signal if the signal is array.
- agent_input_indexes: list[Annotated[str, StringConstraints(strip_whitespace=True, to_upper=True, pattern='^(\\d+|\\d+:\\d+)$')]]¶
Index or range of indices of ONNX (agent) inputs to which this FMU signal shall be linked to. Note: The FMU signal and the ONNX (agent) inputs need to have the same length. Defaults to an empty list.
- model_config: ClassVar[ConfigDict] = {'alias_generator': <function to_camel>, 'populate_by_name': True}¶
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].