InputVariable¶
- class mlfmu.types.fmu_component.InputVariable(*, name: str, type: ~mlfmu.types.fmu_component.FmiVariableType = FmiVariableType.REAL, description: str | None = None, variability: ~mlfmu.types.fmu_component.FmiVariability | None = None, startValue: float | str | bool | int | None = 0, isArray: bool = False, length: int | None = None, agentInputIndexes: list[~typing.Annotated[str, ~pydantic.types.StringConstraints(strip_whitespace=True, to_upper=True, to_lower=None, strict=None, min_length=None, max_length=None, pattern=^(\d+|\d+:\d+)$)]] = [])¶
- Bases: - Variable- Represents an input variable for an FMU component. - Examples - An example of agent_input_indexes can be [“10”, “10:20”, “30”]. - __init__(**data: Any) None¶
- Create a new model by parsing and validating input data from keyword arguments. - Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model. - self is explicitly positional-only to allow self as a field name. 
 - Methods - __init__(**data)- Create a new model by parsing and validating input data from keyword arguments. - construct([_fields_set])- copy(*[, include, exclude, update, deep])- Returns a copy of the model. - dict(*[, include, exclude, by_alias, ...])- from_orm(obj)- json(*[, include, exclude, by_alias, ...])- model_construct([_fields_set])- Creates a new instance of the Model class with validated data. - model_copy(*[, update, deep])- !!! abstract "Usage Documentation" - model_dump(*[, mode, include, exclude, ...])- !!! abstract "Usage Documentation" - model_dump_json(*[, indent, include, ...])- !!! abstract "Usage Documentation" - model_json_schema([by_alias, ref_template, ...])- Generates a JSON schema for a model class. - model_parametrized_name(params)- Compute the class name for parametrizations of generic classes. - model_post_init(context, /)- Override this method to perform additional initialization after __init__ and model_construct. - model_rebuild(*[, force, raise_errors, ...])- Try to rebuild the pydantic-core schema for the model. - model_validate(obj, *[, strict, ...])- Validate a pydantic model instance. - model_validate_json(json_data, *[, strict, ...])- !!! abstract "Usage Documentation" - model_validate_strings(obj, *[, strict, ...])- Validate the given object with string data against the Pydantic model. - parse_file(path, *[, content_type, ...])- parse_obj(obj)- parse_raw(b, *[, content_type, encoding, ...])- schema([by_alias, ref_template])- schema_json(*[, by_alias, ref_template])- update_forward_refs(**localns)- validate(value)- Attributes - model_computed_fields- Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict]. - model_extra- Get extra fields set during validation. - model_fields- model_fields_set- Returns the set of fields that have been explicitly set on this model instance. - Index or range of indices of ONNX (agent) inputs to which this FMU signal shall be linked to. - name- Unique name for the port. - type- Data type as defined by FMI standard. - description- Short FMU variable description. - variability- Signal variability as defined by FMI. - start_value- Initial value of the signal at time step 1. - is_array- When dealing with an array signal, it is essential to specify the LENGTH parameter. - length- Defines the number of entries in the signal if the signal is array. - agent_input_indexes: list[Annotated[str, StringConstraints(strip_whitespace=True, to_upper=True, pattern='^(\\d+|\\d+:\\d+)$')]]¶
- Index or range of indices of ONNX (agent) inputs to which this FMU signal shall be linked to. Note: The FMU signal and the ONNX (agent) inputs need to have the same length. Defaults to an empty list. 
 - model_config: ClassVar[ConfigDict] = {'alias_generator': <function to_camel>, 'populate_by_name': True, 'validate_by_alias': True, 'validate_by_name': True}¶
- Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].