FmiOutputVariable¶
- class mlfmu.types.fmu_component.FmiOutputVariable(*, name: str, type: ~mlfmu.types.fmu_component.FmiVariableType = FmiVariableType.REAL, description: str | None = None, variability: ~mlfmu.types.fmu_component.FmiVariability | None = None, startValue: float | str | bool | int | None = 0, isArray: bool = False, length: int | None = None, agentOutputIndexes: list[~typing.Annotated[str, ~pydantic.types.StringConstraints(strip_whitespace=True, to_upper=True, to_lower=None, strict=None, min_length=None, max_length=None, pattern=^(\d+|\d+:\d+)$)]] = [], causality: ~mlfmu.types.fmu_component.FmiCausality, variableReferences: list[int])¶
Bases:
OutputVariable
Data class representing an output variable in an FMI component.
- __init__(**kwargs: Any) None ¶
Create an FMI output variable.
- Parameters:
causality (FmiCausality, optional) – Causality of the output variable., by default FmiCausality.OUTPUT
variable_references (list[int], optional) – List of variable references associated with the output variable., by default []
Methods
__init__
(**kwargs)Create an FMI output variable.
construct
([_fields_set])copy
(*[, include, exclude, update, deep])Returns a copy of the model.
dict
(*[, include, exclude, by_alias, ...])from_orm
(obj)json
(*[, include, exclude, by_alias, ...])model_construct
([_fields_set])Creates a new instance of the Model class with validated data.
model_copy
(*[, update, deep])Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy
model_dump
(*[, mode, include, exclude, ...])Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump
model_dump_json
(*[, indent, include, ...])Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json
model_json_schema
([by_alias, ref_template, ...])Generates a JSON schema for a model class.
model_parametrized_name
(params)Compute the class name for parametrizations of generic classes.
model_post_init
(_BaseModel__context)Override this method to perform additional initialization after __init__ and model_construct.
model_rebuild
(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate
(obj, *[, strict, ...])Validate a pydantic model instance.
model_validate_json
(json_data, *[, strict, ...])Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing
model_validate_strings
(obj, *[, strict, context])Validate the given object with string data against the Pydantic model.
parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])update_forward_refs
(**localns)validate
(value)Attributes
model_computed_fields
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
model_extra
Get extra fields set during validation.
model_fields
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
The causality of the output variable.
The list of variable references associated with the output variable.
agent_output_indexes
Index or range of indices of agent outputs that will be linked to this output signal.
name
Unique name for the port.
type
Data type as defined by FMI standard.
description
Short FMU variable description.
variability
Signal variability as defined by FMI.
start_value
Initial value of the signal at time step 1.
is_array
When dealing with an array signal, it is essential to specify the LENGTH parameter.
length
Defines the number of entries in the signal if the signal is array.
- causality: FmiCausality¶
The causality of the output variable.
- model_config: ClassVar[ConfigDict] = {'alias_generator': <function to_camel>, 'populate_by_name': True}¶
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- variable_references: list[int]¶
The list of variable references associated with the output variable.