FmiInputVariable¶
- class mlfmu.types.fmu_component.FmiInputVariable(*, name: str, type: ~mlfmu.types.fmu_component.FmiVariableType = FmiVariableType.REAL, description: str | None = None, variability: ~mlfmu.types.fmu_component.FmiVariability | None = None, startValue: float | str | bool | int | None = 0, isArray: bool = False, length: int | None = None, agentInputIndexes: list[~typing.Annotated[str, ~pydantic.types.StringConstraints(strip_whitespace=True, to_upper=True, to_lower=None, strict=None, min_length=None, max_length=None, pattern=^(\d+|\d+:\d+)$)]] = [], causality: ~mlfmu.types.fmu_component.FmiCausality, variableReferences: list[int], agentStateInitIndexes: list[list[int]] = [])¶
Bases:
InputVariableData class representing an input variable in an FMI component.
- __init__(**kwargs: Any) None¶
Create an FMI input variable.
- Parameters:
causality (FmiCausality, optional) – Causality of the input variable., by default FmiCausality.INPUT
variable_references (list[int], optional) – List of variable references associated with the input variable., by default []
Methods
__init__(**kwargs)Create an FMI input variable.
construct([_fields_set])copy(*[, include, exclude, update, deep])Returns a copy of the model.
dict(*[, include, exclude, by_alias, ...])from_orm(obj)json(*[, include, exclude, by_alias, ...])model_construct([_fields_set])Creates a new instance of the Model class with validated data.
model_copy(*[, update, deep])!!! abstract "Usage Documentation"
model_dump(*[, mode, include, exclude, ...])!!! abstract "Usage Documentation"
model_dump_json(*[, indent, include, ...])!!! abstract "Usage Documentation"
model_json_schema([by_alias, ref_template, ...])Generates a JSON schema for a model class.
model_parametrized_name(params)Compute the class name for parametrizations of generic classes.
model_post_init(context, /)Override this method to perform additional initialization after __init__ and model_construct.
model_rebuild(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate(obj, *[, strict, ...])Validate a pydantic model instance.
model_validate_json(json_data, *[, strict, ...])!!! abstract "Usage Documentation"
model_validate_strings(obj, *[, strict, ...])Validate the given object with string data against the Pydantic model.
parse_file(path, *[, content_type, ...])parse_obj(obj)parse_raw(b, *[, content_type, encoding, ...])schema([by_alias, ref_template])schema_json(*[, by_alias, ref_template])update_forward_refs(**localns)validate(value)Attributes
model_computed_fieldsConfiguration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
model_extraGet extra fields set during validation.
model_fieldsmodel_fields_setReturns the set of fields that have been explicitly set on this model instance.
The causality of the input variable.
The list of variable references associated with the input variable.
List of state initialization indexes for ONNX model - concerns mapping of FMU input variables to ONNX states.
agent_input_indexesIndex or range of indices of ONNX (agent) inputs to which this FMU signal shall be linked to.
nameUnique name for the port.
typeData type as defined by FMI standard.
descriptionShort FMU variable description.
variabilitySignal variability as defined by FMI.
start_valueInitial value of the signal at time step 1.
is_arrayWhen dealing with an array signal, it is essential to specify the LENGTH parameter.
lengthDefines the number of entries in the signal if the signal is array.
- agent_state_init_indexes: list[list[int]]¶
List of state initialization indexes for ONNX model - concerns mapping of FMU input variables to ONNX states.
- causality: FmiCausality¶
The causality of the input variable.
- model_config: ClassVar[ConfigDict] = {'alias_generator': <function to_camel>, 'populate_by_name': True, 'validate_by_alias': True, 'validate_by_name': True}¶
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- variable_references: list[int]¶
The list of variable references associated with the input variable.